Comparison of explicit atom, united atom, and coarse-grained simulations of poly(methyl methacrylate).

نویسندگان

  • Chunxia Chen
  • Praveen Depa
  • Janna K Maranas
  • Victoria Garcia Sakai
چکیده

We evaluate explicit atom, united atom, and coarse-grained force fields for molecular dynamics simulation of poly(methyl methacrylate) (PMMA) by comparison to structural and dynamic neutron scattering data. The coarse-grained force field is assigned based on output of the united atom simulation, for which we use an existing force field. The atomic structure of PMMA requires the use of two types of coarse-grained beads, one representing the backbone part of the repeat unit and the other representing the side group. The explicit atom description more closely resembles dynamic experimental data than the united atom description, although the latter provides a reasonable approximation. The coarse-grained description provides structural and dynamic properties in agreement with the united atom description on which it is based, while allowing extension of the time trajectory of the simulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Initiator of [5-(benzyloxy)-4-oxo-4H-pyran-2-yl]methyl-2-bromo-2-methylpropanoateas in Atom Transfer Radical Polymerization of Styrene and Methyl Methacrylate

A novel nano-initiator containing kojic acid moiety, [5-(benzyloxy)-4-oxo-4H-pyran-2-yl)methyl-2-bromo-2-methylpropanoate was synthesized by the reaction of 5-(benzyloxy)-2-(hydroxymethyl)-4H-pyran-4-one with 2-bromoisobutyryl bromide in triethylamine and used as initiator in the atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate in the presence of Cu(0)/CuCl2and N,N...

متن کامل

A comparison of united atom, explicit atom, and coarse-grained simulation models for poly(ethylene oxide).

We compare static and dynamic properties obtained from three levels of modeling for molecular dynamics simulation of poly(ethylene oxide) (PEO). Neutron scattering data are used as a test of each model's accuracy. The three simulation models are an explicit atom (EA) model (all the hydrogens are taken into account explicitly), a united atom (UA) model (CH(2) and CH(3) groups are considered as a...

متن کامل

A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding.

Structure-based coarse-grained Gō-like models have been used extensively in deciphering protein folding mechanisms because of their simplicity and tractability. Meanwhile, explicit-solvent molecular dynamics (MD) simulations with physics-based all-atom force fields have been applied successfully to simulate folding/unfolding transitions for several small, fast-folding proteins. To explore the d...

متن کامل

Probing the global and local dynamics of aminoacyl-tRNA synthetases using all-atom and coarse-grained simulations

Coarse-grained simulations have emerged as invaluable tools for studying conformational changes in biomolecules. To evaluate the effectiveness of computationally inexpensive coarse-grained models in studying global and local dynamics of large protein systems like aminoacyl-tRNA synthetases, we have performed coarse-grained normal mode analysis, as well as principle component analysis on traject...

متن کامل

A coarse-graining approach for molecular simulation that retains the dynamics of the all-atom reference system by implementing hydrodynamic interactions.

We report on a new approach for deriving coarse-grained intermolecular forces that retains the frictional contribution that is often discarded by conventional coarse-graining methods. The approach is tested for water and an aqueous glucose solution, and the results from the new implementation for coarse-grained molecular dynamics simulation show remarkable agreement with the dynamics obtained f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 12  شماره 

صفحات  -

تاریخ انتشار 2008